首页> 外文OA文献 >Hamiltonian Brownian motion in Gaussian thermally fluctuating potential. I. Exact Langevin equations, invalidity of Marcovian approximation, common bottleneck of dynamic noise theories, and diffusivity/mobility 1/f noise
【2h】

Hamiltonian Brownian motion in Gaussian thermally fluctuating potential. I. Exact Langevin equations, invalidity of Marcovian approximation, common bottleneck of dynamic noise theories, and diffusivity/mobility 1/f noise

机译:高斯热变动势的哈密顿布朗运动。   I.精确的朗之万方程,marcovian近似的无效性,常见   动态噪声理论的瓶颈,以及扩散性/迁移率1 / f噪声

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamical random walk of classical particle in thermodynamically equilibriumfluctuating medium, - Gaussian random potential field, - is considered in theframework of explicit stochastic representation of deterministic interactions.We discuss corresponding formally exact Langevin equations for the particle'strajectory and show that Marcovian kinetic equation approximation to them isinadequate, - even (and especially) in case of spatially-temporallyshort-correlated field, - since ignores such actual effects of exponentialinstability of the trajectory (in respect to small perturbations) as scalelesslow-frequency diffusivity/mobility fluctuations (and other excess degrees ofrandomness) reflected by third-, fourth- and higher-order long-rangeirreducible statistical correlations. We try to catch the latter, - squeezingthrough typical theoretical narrow bottleneck, - with the help of an exactrelationship between the instability and diffusivity statisticalcharacteristics, along with standard analytical d approximations. The result isquasi-static diffusivity fluctuations which generally are comparable with meanvalue of diffusivity and disappear in the limit of infinitely large medium'scorrelation length or infinitely small correlation time only, in agreement withthe previously suggested theorem on fundamental 1/f noise.
机译:在确定性相互作用的显式随机表示框架中考虑了经典粒子在热力学平衡波动介质-高斯随机势场-中的动态随机游动。我们讨论了对应于粒子轨道的形式上精确的Langevin方程,并证明了Marcovian动力学方程近似于它们是不充分的,甚至(特别是在时空短相关的情况下),因为忽略了轨迹的指数不稳定性(就小扰动而言)的实际影响,如无标度低频扩散率/迁移率波动(以及其他过度程度)随机性)反映在三阶,四阶和更高阶的远程不可约统计上。在不稳定性和扩散统计特性之间的精确关系以及标准解析d逼近的帮助下,我们尝试克服后者-克服典型的理论狭窄瓶颈。结果是准静态扩散率波动,通常与扩散率平均值相当,并且仅在无限大的介质相关长度或无限小的相关时间的范围内消失,这与先前建议的关于基本1 / f噪声的定理一致。

著录项

  • 作者

    Kuzovlev, Yu. E.;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号